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Summary

 

1.

 

Recent studies suggest that long tail streamers (narrow outermost tail feathers) of the barn swallow

 

Hirundo rustica

 

, Linnaeus have initially evolved purely via natural selection for enhanced
manoeuvrability. According to an alternative view, streamers have evolved initially solely via sexual
selection for costly signalling, and their slender profile is merely an adaptation reducing the
aerodynamic cost of a long tail ornament.

 

2.

 

In order to distinguish between these alternative hypotheses we performed a standardized flight-
maze experiment, in which we imitated the initial elongation of outermost tail feathers in a
streamer-less hirundine, the house martin 

 

Delichon urbica

 

, Linnaeus, contrasting the effects on
flight manoeuvrability from adding either a broad or a narrow piece of feather.

 

3.

 

‘Narrow-feathered’ house martins (which had initial tail streamers modelled on a natural
streamer of  the barn swallow) manoeuvred better than ‘broad-feathered’ house martins (which
had the natural shape of tips of experimentally elongated outermost tail feathers left unchanged),
independent of elongation of the feather.

 

4.

 

A small elongation of outermost tail feathers did not significantly improve manoeuvrability
either in the case of ‘narrow-feathered’ or ‘broad-feathered’ birds.

 

5.

 

These results suggest that it is the slender shape, but not elongation of streamers that is impor-
tant for manoeuvrability, and thus streamer elongation is better explained by the sexual-selection
than the improved-manoeuvrability hypothesis. We discuss hypothetical scenarios for evolution of
hirundine tail streamers.
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Introduction

 

Birds’ tails are influenced by a variety of interacting selection
pressures and thus are a good model system for studies of how
different evolutionary forces initiate changes in morphology
(e.g. Balmford 

 

et al.

 

 1993; Thomas & Balmford 1995; Heden-
ström 2002; Evans 2004). However, in some instances differ-
ent selection pressures might have the same effect on tail
morphology, at least for a certain period of time, making it
difficult to resolve which one is actually the cause of  the
evolutionary change. Such a case is the evolution of the long

sexually size-dimorphic tails with streamers (elongated outer-
most tail feathers) in the barn swallow (

 

Hirundo rustica

 

,
Linnaeus) (Evans & Thomas 1997; Møller 

 

et al

 

. 1998;
Matyjasiak & Jab

 

l

 

o

 

n

 

ski 2001; Møller & Barbosa 2001; Park

 

et al.

 

 2001).
Two hypotheses have been put forward to explain the

evolution of barn swallow tail streamers. According to the
sexual-selection hypothesis (Møller 

 

et al

 

. 1998), streamers
may have evolved initially solely via sexual selection as a
costly signal of quality, in accordance with the handicap prin-
ciple. barn swallow females have shorter streamers than
males (Ba

 

n

 

bura 1986; Møller 1994). Females base their mate
choice on male tail length (Møller 1988; Smith & Mont-
gomerie 1991), although longer tailed males contribute less to
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parental care than short-tailed males (Møller 1994). The
length of male streamers appears to have a genetic basis and
reflects inherent differences in phenotypic quality among
males. However, elongated outermost tail feathers are costly
to males, and the costs include aerodynamic cost (Thomas
1993; Barbosa & Møller 1999), impaired foraging and
viability (Møller & de Lope 1994; Møller

 

 et al.

 

 1995a) and
increased risk of  predation, parasitism and disease (Saino
& Møller 1996; Møller & Nielsen 1997; Saino, Bolzern &
Møller 1997). Slender shape of  streamers was suggested to
be an adaptation of  their fine morphology reducing the
aerodynamic cost of  tail ornaments, and to indicate loss
of  a function of these feathers in the context of selection for
flight performance (Møller 

 

et al.

 

 1995b, 1998; Møller &
Hedenström 1999).

By contrast, the improved-manoeuvrability hypothesis
(Evans & Thomas 1997) suggests that barn swallow streamers
might have an indirect aerodynamic function in the context
of selection for improved manoeuvrability. Norberg (1994)
proposed that the primary function of streamers is to improve
the aerodynamic performance of the basal part of these feathers
during slow or turning flight. He proposed an aero-elastic
mechanism, according to which streamers create a pitching
moment about the outermost tail feather’s long axis causing
an automatic downward deflection of the tail’s leading edge
when the tail is spread and lowered. This may considerably
increase tail-generated lift thus allowing for tighter turns
(Thomas 1993; Evans & Thomas 1997). Several studies have
reported a curvilinear relationship between length of Swallow
streamers and manoeuvrability as measured in a flight maze
or by stereo-video filming (Evans 1998; Buchanan & Evans
2000; Rowe 

 

et al.

 

 2001; Bro-Jørgensen 

 

et al.

 

 2007). These
studies suggested that the proximal part of the streamer aids
manoeuvrability and hence could be attributed to natural
selection, whereas the distal part of the streamer is costly in
terms of impaired manoeuvrability and thus can be viewed as
sexually selected.

Park 

 

et al.

 

 (2000) attempted to discriminate between these
hypotheses by investigating the effects of  lengthening the
tail with small, imitated streamers on manoeuvrability of
streamer-less hirundines. They confirmed the aerodynamic
theory that a small elongation of  outermost tail feathers
augments turning flight and suggested that initial evolution
of streamers was via selection for manoeuvrability at a cost to
flight velocity and acceleration. Matyjasiak 

 

et al

 

. (2004) noted
that elongated outermost tail feathers are both long and
narrow (Fig. 1), and the narrowness of these feathers may
actually be the reason behind improved manoeuvrability
(perhaps in combination with elongation). Park 

 

et al

 

. (2000)
imitated the early stage of  swallow streamer elongation by
adding actual streamers, which are narrow, so their experiment
did not distinguish between these hypotheses. Distinction
between the effects of feather narrowing and those of feather
lengthening on manoeuvrability is important, because if  it is
the narrowness and not elongation of  streamers that is
important in turning flight then streamer elongation is better
explained by the sexual-selection hypothesis.

Matyjasiak 

 

et al

 

. (2004) tested the improved-manoeuvrability
hypothesis and confirmed that short narrow streamers improved
manoeuvrability. Their experiment could not support either
the sexual-selection model or the improved-manoeuvrability
model of streamer evolution, however, because they did not
test for the effects on manoeuvrability of combined feather
narrowing and feather lengthening.

In this study we distinguish between the effects of feather
lengthening and those of feather narrowing on flight manoeu-
vrability in a fully factorial design. We performed a standard-
ized flight-maze experiment, in which we imitated the early
elongation of outermost tail feathers into streamers contrast-
ing the effect on manoeuvrability from adding a broad piece
of  feather and a narrow piece of  feather. We used house
martins 

 

Delichon urbica

 

, Linnaeus, a streamer-less size-
monomorphic hirundine that was studied previously by Park

 

et al

 

. (2000) and Matyjasiak 

 

et al

 

. (2004). The house martin
is closely related to the barn swallow and the tail shape
of  this species resembles that of  hypothetical ancestors
of  modern tail-ornamented hirundines (Matyjasiak 

 

et al

 

.
2000). We evaluated manoeuvrability in a standardised
manner using a flight maze. A crowded maze environment
presents birds with a standardised task that forces them to
make increasingly tight turns around obstacles. The perform-
ance of individuals in a maze can be used for an assessment of
manoeuvrability (Aldridge 1986; Møller 1991; Evans 

 

et al.

 

1994; Balmford 

 

et al

 

. 2000; Rowe 

 

et al

 

. 2001; Bro-Jørgensen

 

et al

 

. 2007).

 

Fig. 1. Morphological components of the outermost tail feathers in
(a) sexually size-monomorphic streamer-less hirundines and (b)
sexually size-dimorphic hirundines with streamers. Note that streamers
are not merely elongated versions of sexually size-monomorphic
outermost tail feathers of streamer-less hirundines, but are slender
with similarly narrow vanes on the two sides of the shaft at the apical
part of the feather. Outermost tail feathers in streamer-less species
have broad tips with asymmetric vanes (the outer vane is narrower
than the inner vane).
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Material and methods

 

F IELD

 

 

 

METHODS

 

The study was conducted in 2002 in a large (

 

c

 

. 600 pairs) house
martin colony located in the RUCAB, University of Extremadura,
Badajoz, South-western Spain (38

 

°

 

50

 

′ 

 

N, 6

 

°

 

59

 

′ 

 

E). House martins of
both sexes were captured with the use of mist nets during the incu-
bation phase of the first brood of this species (second and third
weeks of April). We took the following biometric measurements: left
and right flattened wing length, wingspan (the longest distance from
one wing tip to the other, with the wing joints fully extended), left
and right outermost tail feather lengths, and the length of the inner
tail feathers were measured to the nearest 1 mm with a ruler; head, bill,
keel and left and right tarsus lengths were measured to the nearest
0·1 mm using a pair of callipers; body mass was measured to the
nearest 0·5 g with a Pesola spring balance; and aspect ratio was
calculated as (wing span)

 

2

 

/wing area (wing area was measured by
making a tracing of the outlines of fully extended wings). The birds
were sexed according to presence and appearance of a brood patch
(Svensson 1984).

 

TA IL

 

 

 

MANIPULATIONS

 

Individual house martins of both sexes were randomly assigned to
10 groups. Five groups, hereafter named ‘broad-feathered’ or B groups,
had the natural shape of the outermost tail feather tips left
unchanged (feather tips in B birds were broad with the outer vane
narrower than the inner vane; Fig. 2a,c). Three of these five B groups
were ‘tail-elongated’ groups (B5, B10 and B15) and two were ‘natural-
length’ groups (B0a and B0b). ‘Tail-elongated’ B5, B10 and B15
birds had the two outermost tail feathers cut and replaced with
outermost tail feathers, taken from a house martin, that were longer
than the original feather. The post-manipulation length of outermost
tail feathers in B5, B10 and B15 groups was increased by 5, 10 or
15 mm, respectively. The ‘natural-length’ B0a group had the outer
tail feathers cut and re-glued without changing feather length (to
control for the effect of feather cutting and gluing). ‘Natural-length’
B0b birds obtained the same amount of handling, but no feathers
were cut. The remaining five groups (hereafter named ‘narrow-
feathered’ or N groups) had the tips of the outermost tail feathers
trimmed into narrow ‘streamer’ shapes with equally narrow vanes
modelled on natural streamers of the barn swallow (Fig. 2b,d).
Three of these five N groups were ‘tail-elongated’ groups (N5, N10

and N15) and two were ‘natural-length’ groups (N0a and N0b).
‘Tail-elongated’ N5, N10 and N15 birds had the two outermost tail
feathers cut and replaced with outermost tail feathers, taken from a
House Martin, that were longer than the original feather. The post-
manipulation length of outermost tail feathers in N5, N10 and N15
groups was increased by 5, 10 or 15 mm, respectively. ‘Natural-
length’ N0a group had the outer tail feathers cut and re-glued with-
out changing feather length. ‘Natural-length’ N0b birds obtained
the same amount of handling, but no feathers were cut. Feathers
were cut under the tail coverts 

 

c

 

. 7–12 mm from the feather base. The
proximal and distal parts of the feathers were attached and fixed
using 5 mm micropins and a cyano-acrylic super-glue (Smith &
Montgomerie 1991; Park 

 

et al

 

. 2000).

 

THE

 

 

 

FL IGHT

 

 

 

MAZE

 

 

 

AND

 

 

 

MEASUREMENTS

 

 

 

OF

 

 

 

MANOEUVRABIL ITY

 

We assessed manoeuvrability by releasing birds through a flight
maze measuring 18 

 

×

 

 4 

 

×

 

 1·6 m, adapted from Rowe 

 

et al

 

. (2001).
The maze consisted of a metal frame covered in a fine-mesh netting,
with its long axis being oriented west-east. The west end of the maze
was closed and the east end was open. Birds were released from a box
at the closed end and flew through the maze to escape from the open
end. The first 9 m section of the maze with the release box was free
of obstacles and acted as an acceleration zone. The remaining 9 m
section towards the exit contained 16 successive panels of vertical
strings suspended from the roof of the maze and acted as a test zone.
Both the distance between the strings within a panel and the dis-
tances between consecutive panels decreased towards the exit. The
within-panel separation of the strings decreased from 70 cm at the
beginning of the test zone (roughly twice the wingspan of a house
martin) to 8 cm at the exit (roughly a quarter of the wingspan of a
house martin). The between-panel distance decreased from 70 to
40 cm. The strings were placed so that each panel was offset from
both the neighbouring panels. Each string was weighted to ensure
that it hung vertically, but it could swing if  hit. We measured the time
taken for a bird to negotiate the maze test section and recorded the
number of strings collided with en route, which were used as meas-
ures of the bird’s ability to cope with the crowded maze environment.
A faster flight time and/or fewer strings hit indicate greater mano-
euvrability (e.g. Balmford 

 

et al

 

. 2000; Rowe 

 

et al

 

. 2001; Bro-Jørgensen

 

et al

 

. 2007). The time birds are kept waiting for trials may affect their
flight performance in the maze (P. Matyjasiak, unpublished data).
For this reason we paired B0a and N0a, B0b and N0b, B5 and N5,

 

Fig. 2. Diagrams of tail manipulations applied
to imitate the elongation of outermost tail
feathers in house martins. ‘Natural-length’
manipulation groups: (a) ‘broad-feathered’
group, in which the outermost tail feather tips
were left naturally broad with the inner vane
being wider than the outer vane; and (b)
‘narrow-feathered’ group, in which the tips of
outermost tail feathers were trimmed into
narrow ‘streamer’ shapes with equally narrow
vanes. ‘Tail-elongated’ manipulation groups:
experimental 5, 10 and 15 mm tail elongation
groups for (c) broad outermost feather tips
and (d) narrow outermost feather tips.
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B10 and N10, and B15 and N15 birds, so that comparisons of flight
performance (see below) between ‘broad-feathered’ birds and
‘narrow-feathered’ birds were paired, unless otherwise stated. Dyads
of B-N birds were released through the maze immediately after
manipulation. The order of release within dyads was alternated.

Time taken to negotiate the maze stringed section was measured
based on video images (filming at 25 frames s

 

–1

 

) obtained with the
use of angled mirrors positioned in line with the first and last panels
of strings. A bird’s image was reflected in the first mirror as it entered
the test section and the second image was reflected in the other mirror
when it left the maze. The flight time was estimated as the number of
successive video frames between the two images (accuracy of 0·04 s).
An independent observer, being unaware of the manipulation,
recorded the number of string clashes by monitoring any movement
of the strings from a shelter at the open end of the maze.

 

STATISTICAL

 

 

 

ANALYSIS

 

The time taken to fly through the maze test section and the number
of strings hit were not significantly correlated (see Results), and we
therefore conducted separate statistical analyses for these flight
measures. First, we constructed simple general linear 

 

anova

 

 models
that included either flight time or number of strings hit as a dependent
variable, and tail elongation factor and within-dyad release order as
categorical predictors. This allowed us to determine which manipula-
tion group means differed significantly. Then we re-ran the models
including tail elongation factor as a continuous predictor (both
linear and quadratic terms), with the intention of determining if
there was a continuous effect of tail lengthening, and whether this
effect was linear or curved. Pairing of B and N birds allowed com-
parisons of flight performance measures within dyads based on the
morphology of the outermost tail-feather tips as a predictor variable.
We therefore used 

 

anova

 

 designs that included either flight time or
number of strings hit as a dependent variable and one repeated-
measures (within-subject) factor to compare within-dyad differences
in flight measures. Second, we constructed complex general stepwise
regression (GSR) models that included either flight time or number
of strings hit as a dependent variable, tail elongation as a continuous
predictor, date, sex and release order as categorical predictors, and
morphological measurements and estimates of wing and tail fluctu-
ating asymmetry (an absolute difference between the left and right
wing or tail lengths, respectively) as continuous predictors. GSR
does not allow for repeated measures design, and hence the streamer
morphology was included as a between-group factor and within-day
release order, instead of within-dyad release order, was used as a con-
tinuous covariate. Initial models also included interactions between
manipulation factors and sex, date and morphological measure-
ments. Insignificant variables were removed from the models, which
were then rerun. However, those variables that significantly inter-
acted with other variables in the model were not removed regardless
of their significance. We checked residuals for a normal distribution
and variances for homogeneity. Flight time, number of strings hit
and morphological variables were ln(

 

x

 

 + 1)-transformed prior to
analysis. We used 

 

statistica

 

 5·5A (Statsoft Inc. 1997).
Morphological variables are inter-correlated, and we therefore

used principal components to construct new composite variables
representing various aspects of the birds’ morphology. ‘Flight appa-
ratus’ (FLAP) is the first principal component calculated from the
five flight morphology variables: wing length, tail length, inner tail-
feather length, wingspan and aspect ratio. ‘Body size’ (BOS) is the
first principal component calculated from the three morphological
variables: the lengths of the bill, tarsus and keel. Body mass was

weakly correlated with the other morphological variables and thus
was used as an individual variable. FLAP = –0·37 

 

×

 

 wing – 0·31 

 

×

 

 tail –
0·21 

 

×

 

 inner tail – 0·35 

 

×

 

 wingspan–0·01 

 

×

 

 aspect ratio. This com-
ponent explained 49% of the total variance, and the factor loadings
were –0·91 for wing, –0·78 for tail, –0·53 for inner tail, –0·87 for
wingspan, and –0·02 for aspect ratio. BOS = 0·37 

 

×

 

 bill + 0·52

 

× 

 

tarsus + 0·51 

 

×

 

 keel. This component explained 50% of the total
variance, and the factor loadings were 0·54 for bill, 0·78 for tarsus
and 0·77 for keel. The two composite variables and body mass were
weakly positively correlated (Pearson’s correlation coefficients,
FLAP and BOS 

 

r 

 

= 0·37, FLAP body mass 

 

r 

 

= 0·15, BOS and body
mass 

 

r 

 

= 0·29).

 

Results

 

We obtained the time taken to fly through the maze test
section and the number of strings hit en route for 100 House
Martins (62 males and 38 females). Flight time was weakly,
but not significantly positively correlated with number of
strings hit (

 

r

 

 = 0·09, 

 

t

 

100

 

 = 0·87, 

 

P

 

 > 0·3). Cutting and gluing
of  tail feathers did not have a significant effect on House
Martin flight performance measures (flight time 

 

F

 

1,37

 

 = 0·84,

 

P

 

 > 0·35; no. strings hit 

 

F

 

1,37

 

 = 0·00, 

 

P

 

 > 0·98), and hence we
pooled B0a and B0b groups into one B0 group and N0a and
N0b groups into one N0 group.

The simple general linear 

 

anova

 

 models including either
flight time or number of strings hit as a dependent variable,
streamer width as a repeated measures factor, and tail elon-
gation and within-dyad release order as categorical predictors
had a significant effect of streamer width (flight time 

 

F

 

1,42

 

= 4·17, 

 

P

 

 < 0·05; no. strings hit 

 

F

 

1,42

 

 = 12·99, 

 

P

 

 < 0·001).
Flight time through the stringed section was significantly
faster and number of strings hit en route was significantly
lower in the case of ‘narrow-feathered’ than ‘broad-feathered’
birds. Of the two flight variables only number of strings hit
was significantly predicted by a categorical elongation fac-
tor (flight time 

 

F

 

3,42

 

 = 0·62, 

 

P

 

 > 0·6; no. strings hit 

 

F

 

3,42

 

 = 3·23,

 

P

 

 < 0·05). However, there were no significant differences
between elongation group means (Bonferroni 

 

post

 

-

 

hoc

 

 test
for multiple comparisons). Streamer width also predicted
both flight variables in simple 

 

anova

 

 models that included tail
elongation as a continuous predictor (Table 1, Fig. 3). The
effect of tail elongation on flight performance was significant
(both linear and quadratic elongation terms) only in the case
of number of strings hit (Table 1, Fig. 3). The linear relation-
ship between number of strings hit while flying through the
maze and elongation was negative and the curvilinear rela-
tionship was 

 

u

 

-shaped. In the simple model for flight time,
the quadratic elongation term did not explain a significant
amount of variation in the flight measure and was removed in
order to assess the importance of the linear elongation term to
the model.

The final GSR model explaining individual variation in
flight time had a significant effect of streamer width. Effects
of tail elongation (both linear and quadratic elongation
terms) were not significant (the quadratic elongation term
was not retained in the model; overall model 

 

r

 

2

 

 = 0·07;

 

F

 

6,93

 

 = 2·15, 

 

P

 

 < 0·05; Table 1). Effects of both linear and
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quadratic elongation terms in interaction with streamer
width were statistically insignificant, and hence were removed
from the model. An identical approach for number of strings
hit as a dependent variable led to a final model that, after
removal of insignificant factors, contained significant effects
of  streamer width and tail elongation (both linear and
quadratic elongation terms), and an interaction of streamer
width with elongation squared (overall model r2 = 0·20; F10,93

= 4·83, P < 0·001; Table 1). The model also had a positive and
significant effect of tail fluctuating asymmetry on number of
strings hit. Therefore, manoeuvrability variables were still
predicted by a streamer width variable (‘narrow-feathered’
birds manoeuvred significantly better than ‘broad-feathered’
birds), once other possible effects had been controlled statis-
tically (Table 1, Fig. 3).

Discussion

As measured by the flight maze experiment, which mimicked
the early stages of elongation of the outermost tail feathers in
the house martin, ‘narrow-feathered’ birds (which had initial
tail streamers modelled on a natural streamer of the barn
swallow) negotiated the crowded maze environment more
effectively than ‘broad-feathered’ birds, independent of the
elongation of the feather. Next a small elongation of the out-
ermost tail feathers (e.g. 5 mm elongation; B5 and N5 groups
compared to B0 and N0 groups, respectively) did not improve
manoeuvrability, both in the case of ‘broad-feathered’ or
‘narrow-feathered’ birds. Although a continuous tail elonga-
tion variable (both linear and quadratic elongation terms)
significantly predicted manoeuvrability as measured by
number of strings hit (Table 1), no significant differences
existed among elongation group means. In terms of streamer

Table 1. Simple and complex general linear models showing the effect of elongating the outermost tail feathers of house martins with broad
pieces of feather and narrow pieces of feather on measures of manoeuvrability

Source of variation

Results from the simple 
GLM anova models Final results from the complex GSR models

Flight time No. strings hit Flight time (slope, 1 SE) No. strings hit (slope, 1 SE)

Streamer width F1,46 = 5·88* F1,44 = 8·09** F1,93 = 5·24* (0·0772, 0·033) F1,89 = 9·00** (0·0046, 0·001)
Elongation F1,46 = 1·32 F1,44 = 6·45* F1,93 = 1·30 F1,89 = 4·57* (−0·0015, 0·0007)
Elongation2 − F1,44 = 5·17* F1,89 = 4·88* (0·0001, 0·00005)
Release order F1,46 = 0·62 F1,44 = 0·31
Sex − − F1,89 = 1·16
Streamer width × Elongation F1,46 = 0·79 F1,44 = 1·33
Streamer width × Elongation2 − F1,44 = 1·56 F1,89 = 8·30** (0·0024, 0·001)
Streamer width × Body mass − − F1,93 = 5·15* (−0·0150, 0·006)
Streamer width × Elongation2 × Body mass − − F1,89 = 8·29** (−0·0005, 0·0001)
Streamer width × Elongation × Sex − − F1,89 = 4·96* (−0·0014, 0·0006)
Streamer width × Elongation2 × Sex − − F1,89 = 5·21* (0·0001, 0·0001)
Elongation × BOS − − F1,93 = 4·33* (0·0002, 0·0001)
BOS − − F1,93 = 3·01
Body mass − − F1,93 = 0·32 F1,89 = 2·37
Tail symmetry − − F1,89 = 6·81* (0·0040, 0·0015)

In parentheses we provide parameter estimates and their standard errors. BOS: composite measure for body size. *P < 0·05, **P < 0·01; −, 
not tested; blank, not significant.

Fig. 3. The effect of mimicked tail elongation with broad (squares)
and narrow (circles) pieces of feather on flight time through the maze
test section (a) and the number of strings hit en route (b) in the house
martin (Error bars = SE).
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evolution, the results suggest a natural selection advantage to
narrowing the broad tips of outermost tail feathers in terms of
improved manoeuvrability. By contrast, elongation of outer-
most tail feathers is not important in turning flight (unless in
combination with feather narrowing; see below).

The results of the current study contrast with those
obtained in previous studies (Park et al. 2000). In their
experiments using narrow pieces of feather, Park et al. (2000)
reported that a small streamer elongation improved manoeu-
vrability. Discrepancy between the results of these two studies
may stem from differences in experimental protocols used.
In Park et al. (2000), the control (no streamer) group had the
outermost tail feathers with broad tips, from which the
elongation of a narrow streamer began (as represented by
consecutive elongation groups), while in the present study
the control ‘narrow-feather’ (N0) group had already the outer-
most tail feather tips trimmed into a narrow streamer shape.
In effect, while the present study investigated the effects of
feather lengthening independent of those of feather narrow-
ing on manoeuvrability, Park et al. (2000) have examined the
aerodynamic effects of concurrent experimental lengthening
and narrowing of the outermost tail feather tips into initial
streamers. The positive effect of such a manipulation of the
tail on manoeuvrability found by Park et al. (2000) was con-
firmed in the current study (see below).

Streamer-less hirundines may gain aerodynamic benefits
in the context of manoeuvrability through the evolutionary
narrowing of the broad tips of outermost tail feathers into
slender streamers. This positive effect on manoeuvrability did
not depend on the length of imitated streamers. It is plausible
that initial streamers improved manoeuvrability in ‘narrow-
feathered’ birds through the mechanism suggested by Norberg
(1994). Presumably, experimentally narrowed feather tips
bent to align with the air-stream to a larger extent than nat-
urally broad feather tips, causing a greater pitching moment
about the outermost feather’s torsion axis and creating a
more deflected leading edge of the tail. It seems that this effect
can function independent of  the length of  streamers (see

Barbosa & Møller 1999) and thus can contribute to initial
streamer evolution.

If  there was selection for better manoeuvrability, the results
of the current study suggest that streamers may evolve in
streamer-less hirundines initially purely through natural
selection. First, tail streamers might evolve through an evo-
lutionary reduction of width of the outermost tail feather tips
(an evolutionary transition from the ‘broad-feathered’ B0
stage to the ‘narrow-feathered’ N0 stage; path 1 in Fig. 4).
Improved flight performance resulting from streamers could
thus arise in the absence of preceding tail elongation (Maty-
jasiak et al. 2004). Such an initial streamer evolution would
not impose costs to steady flight, elongated streamers having
been shown to be detrimental to flight measures that are
directly related to velocity and acceleration (Park et al. 2000).
Because such streamers would not increase total tail area,
then, according to theory (Thomas 1993), they would not
increase aerodynamic drag generated from the tail.

Second, natural selection for improved manoeuvrability
acting on a streamer-less hirundine species might lead to the
evolution of  even longer streamers through concurrent
evolutionary lengthening and narrowing of the broad, vane
asymmetric outermost tail feathers (e.g. an evolutionary
transition from the ‘broad-feathered’ B0 stage to the ‘narrow-
feathered’ N5 stage; path 2 in Fig. 4). This might happen
when environmental conditions or prey composition changed
such that the advantage of improved manoeuvrability exceeded
the cost to other measures of flight performance (Park et al.
2000). It follows therefore, in contrast to the proposition by
Møller et al. (1998) and Møller & Hedenström (1999), that
sexual selection is not the only possible reason for the origin
of swallow streamers. However, if  there is no current selection
for improved manoeuvrability, sexual selection must be invoked
as the evolutionary pressure instigating the evolution of a
long narrow streamer. We would like to point out that, like many
other streamer-less hirundines, house martins have already
evolved tails of a forked shape that is presumably aerodynam-
ically optimal with respect to the lift : drag ratio (Thomas

Fig. 4. Three hypothetical paths for evolution
of hirundine tail streamers. Path 1, slender
streamers evolve purely under natural selection
for improved manoeuvrability through an
evolutionary reduction of width and vane
asymmetry of the outermost tail feather tips,
without preceding elongation of tail feathers.
Path 2, slender streamers evolve purely under
natural selection for manoeuvrability through
concurrent evolutionary narrowing and
lengthening of the broad, vane asymmetric
outermost tail feathers. Path 3, further
evolutionary elongation of short slender
streamers is not beneficial (nor detrimental)
in the context of manoeuvrability; other
evolutionary force, e.g. sexual selection, is
necessary for the development of longer
streamers.
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1993). In such a tail, the broad-tipped outermost feathers
could droop passively in the airflow to form a leading edge
suction in a manner resembling the mechanism envisaged by
Norberg (1994). Nonetheless, the addition of small narrow
streamers to house martins improves manoeuvrability (see
also Matyjasiak et al. 2004). Possible examples of extant bird
species possessing short, narrow outermost tail feathers that
might have been selected for manoeuvrability but not sexually
selected are the common tern Sterna hirundo, Linnaeus and
the arctic tern Sterna paradisaea, Pontoppidan.

Finally, the results of the current study suggest that further
evolutionary elongation of the short slender streamer (an
evolutionary transition from the ‘narrow-feathered’ N0 or
N5 stage to the ‘narrow-feathered’ N10 or N15 stage) is not
beneficial (nor detrimental) in the context of manoeuvrability
(path 3 in Fig. 4). Similarly, we have found no aerodynamic
advantages or costs in terms of manoeuvrability to be gained
through the evolutionary elongation of  the broad-tipped
outermost tail feathers (an evolutionary transition from the
‘broad-feathered’ B0 stage to the ‘broad-feathered’ B5 or B10
stage). An elongation of the outermost tail feathers is detri-
mental to flight measures related to velocity and acceleration
(Park et al. 2000) and impairs foraging success in streamer-
less hirundines (Matyjasiak et al. 1999, 2000). Hence in both
the ‘narrow-feathered’ and ‘broad-feathered’ stage, tail elon-
gation under sexual selection is necessary for the development
of longer streamers. In the latter case, a reduction in feather
width might reduce feather area and thus decrease aero-
dynamic drag (Thomas 1993; Møller & Hedenström 1999). That
we have not found a detrimental effect of further elongation
of the initial streamer on flight manoeuvrability, similar to
what was reported by Park et al. (2000), may stem from
different methods used in these two studies. Park et al. (2000)
measured flight performance in freely flying house martins,
whereas in the present study birds were released into the flight
maze that forced them to make increasingly tight turns and to
manoeuvre at a maximum rate. Hence these two studies may
have measured different aspects of manoeuvring flight, and
hence their results may not be directly comparable.

Møller & Hedenström (1999) have found that all bird
species with long sexually size-dimorphic tails consistently
develop narrower tips of ornamental tail feathers with vanes
of more equal width, as compared to closely related taxa with
short size-monomorphic tails, independent of tail shape.
Flight feathers such as wing primaries and secondaries, and
tail feathers have asymmetric vanes (the outer vane being
narrower than the inner vane), while body feathers have
symmetric vanes (Norberg 1990). As vane asymmetry in
combination with feather curvature and emargination is
essential for an aerodynamic function of  a feather as an
aerofoil (Norberg 1985; Norberg 1990), loss of vane asymme-
try is considered to indicate loss of aerodynamic function of a
feather (Feduccia & Tordoff 1979). Aerodynamic drag, and
therefore cost, of a feather is proportional to its area (Thomas
1993; but see Evans 2003), hence Møller & Hedenström
(1999) attributed the evolution of slender feather tips with
equally narrow vanes in species with sexually size-dimorphic

tails to a general mechanism for reducing the aerodynamic
cost of tail ornaments. The results of the current study argue
against the hypothesis that the slender profile of streamers
reflects loss of a function of these feathers in the context of
flight performance. A reduction of  the width and vane
asymmetry of outermost feathers in forked tail ornaments
can thus be considered not only a morphological modifica-
tion reducing the aerodynamic disadvantage of elaborated
feathers, but also an adaptation facilitating turning flight.
The finding that improved manoeuvrability resulting from
streamers may arise even in the absence of preceding elongation
of outermost tail feathers (see also Matyjasiak et al. 2004)
contradicts the proposition by Møller et al. (1998) and Møller
& Hedenström (1999) that streamers in forked tails have
evolved initially solely via sexual selection for costly signalling
and only later on have aided manoeuvrability; that is, after the
streamer had become long and narrow owing to cost-reducing
modifications of vane morphology. Future research should
focus upon the effect on flight performance of other aspects
of finer morphology of tail feathers. Experimental studies could
quantify the structural density and mechanical properties of
tail streamers using the approach developed by Aparicio, Bonal
& Cordero (2003) and Tubaro (2003), and measure the effect of
these variables on manoeuvrability (birds might be tested in a
flight maze and tail feathers might be measured afterwards).

Future research might also focus on the aerodynamics
of the tail to update the theoretical work of Norberg (1994).
Flight kinematics studies, for example, could manipulate
width and length of the outermost tail feathers in living birds
and evaluate the tail feather bending, twisting and rotation in
a wind tunnel under different levels of  upward action of
airflow (aerodynamic load) and different angles of  attack
of the spread tail. At low air speed, the outermost tail feather
tips in ‘narrow-feathered’ birds should control tail profile
shape to a greater extent than in the case of ‘broad-feathered’
birds. The indirect aerodynamic function of tail streamers
could be evaluated in various hirundine species in relation to
other feather properties, such as shape, flexural stiffness and
torsional rigidity of the feather shaft. Comparative studies of
tail aerodynamics in different hirundines should consider
streamer morphology as well as internal anatomical struc-
tures responsible for tail movements, such as the muscular
arrangement and neuromuscular system (Moreno & Møller
1996). The latter issue was not evaluated in the present study.
Modern streamer-less species may have tail muscular support
and neuromuscular systems different from the supposed
ancestors that gave rise to streamer-tailed species. This would
mean that the current model of tail streamer evolution leaves
some uncertainty about how different streamer-less hirund-
ines would perform given incipient stages of  tail feather
elongation. However, like barn swallows, house martins have
long skeletal tails enabling them to develop relatively great
force in order to counteract the upward action of air flow
(Moreno & Møller 1996). This might allow them to take a
mechanical advantage of tail streamers and to generate more
lift from the tail allowing for tighter turns, which is consistent
with the results of this study.
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In conclusion, in the house martin narrowing of the broad
tips of outermost tail feathers into slender streamers augments
manoeuvrability, and thus may provide a natural selection
advantage in terms of  improved flight performance.
Elongation of narrow streamers does not improve turning
flight, however, unless in combination with feather narrow-
ing. These results suggest that streamers are most likely to
have evolved in the first instance via natural selection for
improved manoeuvrability. As it is the narrowness and not
elongation of the outermost tail feathers that is important for
manoeuvrability, then, contrary to Park et al. (2000), streamer
elongation is better explained by the sexual-selection than the
improved-manoeuvrability hypothesis.
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